India's first satellite, the Aryabhata, was launched by the Soviet Union on 19 April 1975 from Kapustin Yar using a Cosmos-3M launch vehicle. This was followed by the Rohini series of experimental satellites, which were built and launched indigenously. At present, ISRO operates a large number of earth observation satellites.
The INSAT series
INSAT (Indian National Satellite System) is a series of multipurpose geostationary satellites launched by ISRO to satisfy the telecommunications, broadcasting, meteorology and search-and-rescue needs of India. Commissioned in 1983, INSAT is the largest domestic communication system in the Asia-Pacific Region. It is a joint venture of the Department of Space, Department of Telecommunications, India Meteorological Department, All India Radio and Doordarshan. The overall coordination and management of INSAT system rests with the Secretary-level INSAT Coordination Committee.
The IRS series
Indian Remote Sensing satellites (IRS) are a series of earth observation satellites, built, launched and maintained by ISRO. The IRS series provides remote sensing services to the country. The Indian Remote Sensing Satellite system is the largest constellation of remote sensing satellites for civilian use in operation today in the world. All the satellites are placed in polar Sun-synchronous orbit and provide data in a variety of spatial, spectral and temporal resolutions to enable several programmes to be undertaken relevant to national development. The initial versions are composed of the 1 (A, B, C, D) nomenclature. The later versions are named based on their area of application including OceanSat, CartoSat, ResourceSat.
Radar Imaging Satellites
ISRO currently operates two Radar Imaging Satellites. RISAT-1 was launched from Sriharikota Spaceport on 26 April 2012 on board a PSLV. RISAT-1 carries a C-band Synthetic Aperture Radar (SAR) payload, operating in a multi-polarisation and multi-resolution mode and can provide images with coarse, fine and high spatial resolutions.[50] India also operates RISAT-2, which was launched in 2009 and acquired from Israel at a cost $110 million.[50]
Other satellites
ISRO has also launched a set of experimental geostationary satellites known as the GSAT series. Kalpana-1, ISRO's first dedicated meteorological satellite,[51] was launched by the Polar Satellite Launch Vehicle on 12 September 2002.[52] The satellite was originally known as MetSat-1.[53] In February 2003 it was renamed to Kalpana-1 by the Indian Prime Minister Atal Bihari Vajpayee in memory of Kalpana Chawla – a NASA astronaut of Indian origin who perished in Space Shuttle Columbia.
ISRO has also successfully launched the Indo-French satellite SARAL on 25 February 2013, 12:31 UTC. SARAL (or "Satellite with ARgos and ALtiKa") is a cooperative altimetry technology mission. It is being used for monitoring the oceans surface and sea-levels. AltiKa will measure ocean surface topography with an accuracy of 8 mm, against 2.5 cm on average using current-generation altimeters, and with a spatial resolution of 2 km.[54][55]
In June 2014, ISRO launched French Earth Observation Satellite SPOT-7 (mass 714 kg) along with Singapore's first nano satellite VELOX-I, Canada's satellite CAN-X5, Germany's satellite AISAT, via the PSLV-C23 launch vehicle. It was ISRO's 4th commercial launch.[56][57]
South Asia Satellite
The South Asia Satellite (GSAT-9) is a geosynchronous communications and meteorology satellite by the Indian Space Research Organisation (ISRO) for the South Asian Association for Regional Cooperation (SAARC) region.[1] The satellite was launched on the 5th May,2017. During the 18th SAARC summit held in Nepal in 2014, Indian Prime Minister Narendra Modi mooted the idea of a satellite serving the needs of SAARC member nations, part of his Neighbourhood first policy.
One month after sworn in as Prime Minister of India, in June 2014 Modi asked ISRO to develop a SAARC satellite, which can be dedicated as a ‘gift’ to the neighbors.
It is a satellite for the SAARC region with 12 Ku-band transponders (36 MHz each) and launch using the Indian Geosynchronous Satellite Launch Vehicle GSLV Mk-II. The total cost of launching the satellite is estimated to be about ₹2,350,000,000 (₹235 crore). The cost associated with the launch was met by the Government of India. The satellite enables full range of applications and services in the areas of telecommunication and broadcasting applications viz television (TV), direct-to-home (DTH), very small aperture terminals (VSATs), tele-education, telemedicine and disaster management support.
The Ministry of Civil Aviation has decided to implement an indigenous Satellite-Based Regional GPS Augmentation System also known as Space-Based Augmentation System (SBAS) as part of the Satellite-Based Communications, Navigation and Surveillance (CNS)/Air Traffic Management (ATM) plan for civil aviation. The Indian SBAS system has been given an acronym GAGAN – GPS Aided GEO Augmented Navigation. A national plan for satellite navigation including implementation of Technology Demonstration System (TDS) over the Indian air space as a proof of concept has been prepared jointly by Airports Authority of India (AAI) and ISRO. TDS was successfully completed during 2007 by installing eight Indian Reference Stations (INRESs) at eight Indian airports and linked to the Master Control Centre (MCC) located near Bangalore.
The first GAGAN navigation payload has been fabricated and it was proposed to be flown on GSAT-4 during Apr 2010. However, GSAT-4 was not placed in orbit as GSLV-D3 could not complete the mission. Two more GAGAN payloads will be subsequently flown, one each on two geostationary satellites, GSAT-8 and GSAT-10. On 12 May 2012, ISRO announced the successful testing of its indigenous cryogenic engine for 200 seconds for its forthcoming GSLV-D5 flight.[58]
IRNSS is an independent regional navigation satellite system being developed by India. It is designed to provide accurate position information service to users in India as well as the region extending up to 1500 km from its boundary, which is its primary service area. IRNSS will provide two types of services, namely, Standard Positioning Service (SPS) and Restricted Service (RS) and is expected to provide a position accuracy of better than 20 m in the primary service area.[59] It is an autonomous regional satellite navigation system being developed by Indian Space Research Organisation, which is under total control of Indian government. The requirement of such a navigation system is driven by the fact that access to Global Navigation Satellite Systems like GPS is not guaranteed in hostile situations. ISRO initially planned to launch the constellation of satellites between 2012 and 2014 but the project got delayed by nearly 2 years.
ISRO on 1 July 2013, at 23:41 IST launched from Sriharikota the First Indian Navigation Satellite the IRNSS-1A. The IRNSS-1A was launched aboard PSLV-C22. The constellation would be comprising 7 satellites of I-1K bus each weighing around 1450 Kilogrammes, with three satellites in the Geostationary Earth Orbit (GEO) and 4 in Geosynchronous earth orbit(GSO). The constellation would be completed around April 2016.[60]
On 4 April 2014, at 17:14 IST ISRO has launched IRNSS-1B from Sriharikota, its second of seven IRNSS series. 19 minutes after launch PSLV-C24 was successfully injected into its orbit.IRNSS-1C was launched on 16 October 2014, and IRNSS-1D on 28 March 2015.[61]
On 20 January 2016, 9:31 hrs IST IRNSS-1E was launched successfully aboard PSLV-C31 from Satish Dhawan Space Centre (SDSC) SHAR, Sriharikota. On 10 March 2016, 4:31 hrs IST IRNSS-1F was launched successfully aboard PSLV-C32 from Satish Dhawan Space Centre (SDSC) SHAR, Sriharikota. On 28 April 2016, 12:50 hrs IST IRNSS-1G was launched successfully aboard PSLV-XL-C33 from Satish Dhawan Space Centre (SDSC) SHAR, Sriharikota. This Satellite is the seven and the last in the IRNSS system and completes India's own navigation system
As of January 2016, ISRO was in the process of developing 4 back-up satellites to the constellation of existing IRNSS satellites.[62]
On 31 August 2017, India’s ISRO failed in its attempt to launch its eighth regional navigation satellite (IRNSS-1H) from Sriharikota at 7pm. The satellite got stuck in the fourth stage of the Polar Satellite Launch Vehicle–PSLV-C39.
No comments:
Post a Comment